

Anisotropic permeability in the EDZ of drifts in rock salt A numerical approach

Christian Missal & Joachim Stahlmann 5th International Itasca Symposium – Vienna, 2020

Rock salt

Rock salt – Mechanical behavior

[Missal et al., 2016a]

Rock salt – Excavation damge zone (EDZ)

Stress state

Damage in the EDZ

[Missal, 2019]

Paths of fluid flow in salt mechanic

Paths of fluid flow in rock mechanic

[Rodatz, 1973]

Orientation of cracks and resulting permeability

Compression

Extension

 $\{\varepsilon^{d}\} = \int_{t=0}^{t} (\{\dot{\varepsilon}^{t}\} \cdot dt + \{\dot{\varepsilon}^{v}\} \cdot dt + \{\varepsilon^{z}\})dt$

Orientation of cracks and resulting permeability

Compression

Extension

Influencing factors on the permeabilty

Crack spectrum

- Damage-induced strains
- Stress state

Crack permeability

- Crack spacing
- Crack roughness

Influencing factors on the permeabilty

Crack spectrum

- Damage-induced strains
- Stress state

Crack permeability

- Crack spacing
- Crack roughness

Crack cross-linking
Fluid pressure / normal stress $\rightarrow \Delta 2_{X_N}$

[Missal, 2019]

Functional relationship

Crack cross-linking

Crack permeability

$$\left\{P\left(\varepsilon_{v}^{d}, \varepsilon_{i}^{d}\right)\right\} = \left\{\left\langle\frac{\varepsilon_{v}^{d} \cdot (1 + p_{1} \cdot \varepsilon_{i}^{d})}{\varepsilon_{v,B}^{d}} - p_{c}\right\rangle\right\} \qquad k^{*}(x) = \frac{\langle 2x + \Delta 2x_{N}\rangle^{3}}{12 \cdot \overline{b}_{K} \cdot \left(1 + 8.8 \cdot H\left(\frac{\overline{d}_{r}}{d_{H}^{*}} - 0.032\right) \cdot \left(\frac{\overline{d}_{r}}{d_{H}^{*}}\right)^{\frac{3}{2}}\right)} \qquad D\left(x^{*}, \underline{\sigma}\right) = \begin{cases}\frac{x^{*}}{\underline{\sigma}^{2}} e^{-\frac{x^{*}^{2}}{2\underline{\sigma}^{2}}} & \text{für } x > 0 \land \underline{\sigma} > 0\\ 0 & \text{für } x \leq 0 \lor \underline{\sigma} \leq 0\end{cases}$$

Crack spectrum

$$D(x^*, \underline{\sigma}) = \begin{cases} \frac{x^*}{\underline{\sigma}^2} e^{-\frac{x^{*2}}{2\underline{\sigma}^2}} & \text{für } x > 0 \land \underline{\sigma} > 0 \\ 0 & \text{für } x \le 0 \lor \underline{\sigma} \le 0 \end{cases}$$

$$\begin{cases} k_1 \\ k_2 \\ k_3 \end{cases} = k_{ini} + \begin{cases} \int\limits_0^\infty \left(P\left(\varepsilon_v^d, \varepsilon_2^d\right) \cdot D\left(x^*, \underline{\sigma}(\varepsilon_2^d)\right) \cdot k^*(x) + P\left(\varepsilon_v^d, \varepsilon_3^d\right) \cdot D\left(x^*, \underline{\sigma}(\varepsilon_3^d)\right) \cdot k^*(x) \right) dx^* \\ \int\limits_0^\infty \left(P\left(\varepsilon_v^d, \varepsilon_3^d\right) \cdot D\left(x^*, \underline{\sigma}(\varepsilon_3^d)\right) \cdot k^*(x) + P\left(\varepsilon_v^d, \varepsilon_1^d\right) \cdot D\left(x^*, \underline{\sigma}(\varepsilon_1^d)\right) \cdot k^*(x) \right) dx^* \\ \int\limits_0^\infty \left(P\left(\varepsilon_v^d, \varepsilon_3^d\right) \cdot D\left(x^*, \underline{\sigma}(\varepsilon_3^d)\right) \cdot k^*(x) + P\left(\varepsilon_v^d, \varepsilon_1^d\right) \cdot D\left(x^*, \underline{\sigma}(\varepsilon_1^d)\right) \cdot k^*(x) \right) dx^* \end{cases}$$

Schematic relationship

[Missal, 2019]

Generic drift with sealing structure Model

Dimensions of the model

• Width 60 m

• Height 75 m

• Length 8 m

• Zones 177.728

Simulation

- Initial stress state
 Drift in 600 m depth → 14 MPa
- Excavation of the drift
- Construction of the sealing dam

Simulation time 50 years

Generic drift with sealing structure Damage and permeabilty after 25 years

Generic drift with sealing structure Axial permeability before and after installing the dam

Conclusions

Extension of the constitutive model TUBSsalt

- Anisotropic permeability due to the damage-induced dilatancy
- The absolute crack widths are identified using the density function of the Rayleigh distribution
- Taking into account the associated damage component and the normal stress

More realistic description of the permeability in the EDZ

→ Optimization of the verification of the functionality of dam structures

But: These theoretical considerations have to be verified with a suitable test program

Glückauf!

Christian Missal & Joachim Stahlmann 5th International Itasca Symposium – Vienna, 2020